人工神经网络的许多算法已在智能信息处理系统中获得广泛采用,尤为突出是是以下4种算法:ART网络、LVQ网络、Kohonen网络Hopfield网络,下面就具体介绍一下这这四种算法:
1.自适应谐振理论(ART)网络
自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。
当ART-1网络在工作时,其训练是连续进行的,且包括下列算法步骤:
(1)对于所有输出神经元,如果一个输出神经元的全部警戒权值均置为1,则称为独立神经元,因为它不被指定表示任何模式类型。
(2)给出一个新的输入模式x。
(3)使所有的输出神经元能够参加激发竞争。
(4)从竞争神经元中找到获胜的输出神经元,即这个神经元的x·W值为最大;在开始训练时或不存在更好的输出神经元时,优胜神经元可能是个独立神经元。
(5)检查该输入模式x是否与获胜神经元的警戒矢量V足够相似。
(6)如果r≥p,即存在谐振,则转向步骤(7);否则,使获胜神经元暂时无力进一步竞争,并转向步骤(4),重复这一过程直至不存在更多的有能力的神经元为止。
2.学习矢量量化(LVQ)网络
学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。
最简单的LVQ训练步骤如下:
(1)预置参考矢量初始权值。
(2)供给网络一个训练输入模式。
(3)计算输人模式与每个参考矢量间的Euclidean距离。
(4)更新最接近输入模式的参考矢量(即获胜隐含神经元的参考矢量)的权值。如果获胜隐含神经元以输入模式一样的类属于连接至输出神经元的缓冲器,那么参考矢量应更接近输入模式。否则,参考矢量就离开输人模式。
(5)转至步骤(2),以某个新的训练输入模式重复本过程,直至全部训练模式被正确地分类或者满足某个终止准则为止。
3.Kohonen网络
Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。
训练一个Kohonen网络包含下列步骤:
(1)对所有输出神经元的参考矢量预置小的随机初值。
(2)供给网络一个训练输入模式。
(3)确定获胜的输出神经元,即参考矢量最接近输入模式的神经元。参考矢量与输入矢量间的Euclidean距离通常被用作距离测量。
(4)更新获胜神经元的参考矢量及其近邻参考矢量。这些参考矢量(被引至)更接近输入矢量。对于获胜参考矢量,其调整是最大的,而对于离得更远的神经元,减少调整个神经元邻域的大小随着训练的进行而相对减小,到训练结束,只有获胜神经元的参考矢量被调整。
4.Hopfield网络
Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。
具体如下:
1、多层感知机,一种前馈人工神经网络模型,其将输入的多个数据集映射到单一的输出的数据集上,也称为全连接神经网络。2、卷积神经网络核心是卷积层,是一类包含卷积计算且具有深度结构的前馈神经网络算法之一。
3、残差收缩网络,残差收缩网络是卷积神经网络的改进,引入了软阈值化,更适合强噪数据。属于深度残差网络(DeepResialNetwork,ResNet)的新型改进形式。人工神经网络(ArtificialNeuralNetwork,即ANN),是20世纪80年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。
神经网络算法的三大类分别是:
1、前馈神经网络:
这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为“深度”神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。
2、循环网络:
循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。
循环网络的目的是用来处理序列数据。在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。
循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
3、对称连接网络:
对称连接网络有点像循环网络,但是单元之间的连接是对称的(它们在两个方向上权重相同)。比起循环网络,对称连接网络更容易分析。
扩展资料:
应用及发展:
心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。
生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
BP神经网络算法是在BP神经网络现有算法的基础上提出的,是通过任意选定一组权值,将给定的目标输出直接作为线性方程的代数和来建立线性方程组,解得待求权,不存在传统方法的局部极小及收敛速度慢的问题,且更易理解。
1 传统的BP算法简述
BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。具体步骤如下: (1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。 (2)由给定的输入输出模式对计算隐层、输出层各单元输出 bj=f(■wijai-θj) ct=f(■vjtbj-rt) 式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层至隐层的连接权;vjt为隐层至输出层的连接权。 dtk=(ytk-ct)ct(1-ct) ejk=[■dtvjt] bj(1-bj) 式中:dtk为输出层的校正误差;ejk为隐层的校正误差。 (3)计算新的连接权及阀值,计算公式如下: vjt(n+1)=vjt(n)+?琢dtkbj wij(n+1)=wij(n)+?茁ejkaik rt(n+1)=rt(n)+?琢dtk θj(n+1)=θj(n)+?茁ejk 式中:?琢,?茁为学习系数(0<?琢<1,0<?茁<1)。 (4)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。 传统的BP算法,实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法,但其收敛速度慢且容易陷入局部极小,为此提出了一种新的算法,即高斯消元法。
2 改进的BP网络算法
2.1 改进算法概述 此前有人提出:任意选定一组自由权,通过对传递函数建立线性方程组,解得待求权。本文在此基础上将给定的目标输出直接作为线性方程等式代数和来建立线性方程组,不再通过对传递函数求逆来计算神经元的净输出,简化了运算步骤。没有采用误差反馈原理,因此用此法训练出来的神经网络结果与传统算法是等效的。其基本思想是:由所给的输入、输出模式对通过作用于神经网络来建立线性方程组,运用高斯消元法解线性方程组来求得未知权值,而未采用传统BP网络的非线性函数误差反馈寻优的思想。 2.2 改进算法的具体步骤 对给定的样本模式对,随机选定一组自由权,作为输出层和隐含层之间固定权值,通过传递函数计算隐层的实际输出,再将输出层与隐层间的权值作为待求量,直接将目标输出作为等式的右边建立方程组来求解。 现定义如下符号(见图1):x (p)输入层的输入矢量;y (p)输入层输入为x (p)时输出层的实际输出矢量;t (p)目标输出矢量;n,m,r分别为输入层、隐层和输出层神经元个数;W为隐层与输入层间的权矩阵;V为输出层与隐层间的权矩阵。具体步骤如下: (1)随机给定隐层和输入层间神经元的初始权值wij。 (2)由给定的样本输入xi(p)计算出隐层的实际输出aj(p)。为方便起见将图1网络中的阀值写入连接权中去,令:隐层阀值θj=wnj,x(n)=-1,则: aj(p)=f(■wijxi(p)) (j=1,2…m-1)。 (3)计算输出层与隐层间的权值vjr。以输出层的第r个神经元为对象,由给定的输出目标值tr(p)作为等式的多项式值建立方程,用线性方程组表示为: a0(1)v1r+a1(1)v2r+…+am(1)vmr=tr(1)a0(2)v1r+a1(2)v2r+…+am(2)vmr=tr(2) ……a0(p)v1r+a1(p)v2r+…+am(p)vmr=tr(p) 简写为: Av=T 为了使该方程组有唯一解,方程矩阵A为非奇异矩阵,其秩等于其增广矩阵的秩,即:r(A)=r(A┊B),且方程的个数等于未知数的个数,故取m=p,此时方程组的唯一解为: Vr=[v0r,v2r,…vmr](r=0,1,2…m-1) (4)重复第三步就可以求出输出层m个神经元的权值,以求的输出层的权矩阵加上随机固定的隐层与输入层的权值就等于神经网络最后训练的权矩阵。
3 计算机运算实例
现以神经网络最简单的XOR问题用VC编程运算进行比较(取神经网络结构为2-4-1型),传统算法和改进BP算法的误差(取动量因子α=0.001 5,步长η=1.653)
直接简单介绍神经网络算法
神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。
神经元内输入 经历了3步数学运算,
先将两个输入乘以 权重 :
权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度
x1→x1 × w1
x2→x2 × w2
把两个结果相加,加上一个 偏置 :
(x1 × w1)+(x2 × w2)+ b
最后将它们经过 激活函数 处理得到输出:
y = f(x1 × w1 + x2 × w2 + b)
激活函数 的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是 sigmoid函数
sigmoid函数的输出 介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。
神经网络: 神经网络就是把一堆神经元连接在一起
隐藏层 是夹在输入输入层和输出层之间的部分,一个神经网络可以有多个隐藏层。
前馈 是指神经元的输入向前传递获得输出的过程
训练神经网络 ,其实这就是一个优化的过程,将损失最小化
损失 是判断训练神经网络的一个标准
可用 均方误差 定义损失
均方误差 是反映 估计量 与 被估计量 之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的 数学期望 ,称为估计量t的 均方误差 。它等于σ2+b2,其中σ2与b分别是t的 方差 与 偏倚 。
预测值 是由一系列网络权重和偏置计算出来的值
反向传播 是指向后计算偏导数的系统
正向传播算法 是由前往后进行的一个算法
BP(Back Propagation)算法是一种常用的人工神经网络训练算法,是通过反向传播来调整神经网络权值的算法
在人工神经网络中,BP算法的作用是帮助神经网络对输入的数据进行学习,并通过学习来调整神经网络的权值,以使得神经网络能够较好地对未知数据进行预测